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ABSTRACT
As the size and complexity of Deep Neural Network(DNN) models
have been increasing, a variety of parallel techniques such as data
parallelism, model parallelism, and hybrid parallelism have been
proposed. In this study, we focus on the communication behavior
of the above parallelism. We make the observation that inter-node
communication for parameter synchronization drastically degrades
the training performance in data parallel training.

We propose a hybrid parallel strategy that integrates model and
data parallel training by grouping multiple GPUs as a worker for
model parallel training and adopts allreduce to synchronize param-
eters with other workers. This strategy mediates inter-node com-
munication overhead of both data and model parallel training. We
evaluate our system on CNN models for image classification com-
pared to Horovod which is state-of-the-art communication schemes.
The experimental results show that our system is effective to apply
to distributed training with high inter-node communication.

1 INTRODUCTION
Recently, the size and complexity of Deep Neural Network(DNN)
models have continuously been increasing in order to improve the
accuracy and quality of models. Therefore, it is necessary to train
DNN on multi GPUs to address a problem that requires a long
time as training needs intensive computations and large datasets.
Thus, there have been a variety of parallel techniques to accelerate
training on multiple GPUs: Data parallelism has a replica of the
entire model and divides dataset across each GPU [2, 15], model
parallelism holds a partition of the model among multiple GPUs [5,
13, 14], hybrid parallelism combines these two techniques [9, 10, 13].
Furthermore, due to the low GPU utilization of model parallelism,
techniques to apply pipelining has recently been proposed [8, 19].
In this study, at first, we analyze the communication overhead of
parallel training in distributed GPU clusters. We propose a system
that integrates model and data parallel training to minimize inter-
node communication overhead.

There are two widely-used communication architectures in data
parallel training - Parameter server and Allreduce. A parameter
server [15] was initially proposed for machine learning, for exam-
ple, sparse logistic regression, it also has been commonly used in
distributed DL training. However, this centralized architecture has
a communication bottleneck with the high communication cost on
the central nodes. Also, DL models with dense parameters are not
suitable for the parameter server [12]. Accordingly, a decentralized
scheme called Allreduce [1] is adopted to distributed DL systems.
This method takes a peer-to-peer system so that reduce the network
bottleneck with decreasing the amount of communication. Since
Allreduce shows better performance compared to the parameter
∗Authors contributed equally to this research.
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Figure 1: Parallelism on multiple GPUs

server [16, 25], the Allreduce architecture has been adopted recently
in distributed DNN training.

The existing frameworks support two communication modes
in data parallel training: (1) synchronous communication with pa-
rameter server or Allreduce - Bulk Synchronous Parallel (BSP) [26]
(2) asynchronous communication with parameter server - ASyn-
chronous Parallel (ASP) [24, 26]. Also, there is a synchronization
strategy called Stale Synchronous Parallel (SSP) [7] which compro-
mises the middle side of synchronous and asynchronous training.
Some systems [11, 15] exploit SSP where the staleness of model
parameter between the fastest worker and the slowest one cannot
exceed more than a predefined staleness bound. In this study, we
only focus on synchronous data parallel training. We adopt Allre-
duce to communication scheme for data parallel training which is
state-of-the-art communication for CNN models. We can observe
that the performance of data parallel training significantly suffers
from inter-node communication in Figure 2.

In this study, we divide the model on multiple GPUs into dif-
ferent nodes and group these as a worker. The worker performs
Allreduce to synchronize parameters with other workers. In our sys-
tem, Allreduce is done through the intra-communication and only
a small amount of data is transferred through inter-communication
by the model partitioner.

As the performance and use of distributed DL systems has been
gradually increased through various parallel and synchronization
strategies, GPU clusters are also growing in size. In line with
this trend, using a heterogeneous GPU cluster is inevitable due
to the short release cycle of new GPU architectures and expensive
cost [11]. However, most prior distributed deep learning system
only considers homogeneous GPU cluster that each GPU has similar
computation and network capacity [4, 27, 28]. Therefore, we build
a model partitioning algorithm that can reflect both homogeneous
and heterogeneous GPU clusters.
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With the above configuration, what kind of datawill use the inter-
connection or intra-connection is defined. Gradients are only com-
municated through intra-connection. Updating parameters could
be done fast using high bandwidth. For inter-connection,a small
amount of data such as intermediate results transferred because
the model is divided across nodes. It has relatively low bandwidth
and usually causes communication overhead, but it is efficiently
utilized in this case.

Our system starts with profiling the cluster configuration such
as computation capability and memory size of GPUs, network band-
width by doing virtual iteration. Then, resource allocator makes
a worker group composed of some GPUs based on profiling data.
Finally, the model partitioner divides the model based on cluster
configuration and model information.

In our experiments, we use CNN models for image classifi-
cation with ImageNet [6] because distributed Tensorflow CNN
benchmarks [26] support Allreduce including horovod and provide
throughput (images/second) and accuracy.

Our contributions are as follows:
• We propose hybrid strategy merging data parallel and model
parallel training which mediates communication between
intra-node and inter-node connections.

• We can efficiently utilize network bandwidth in topology-
aware manner.

• We achieve higher training performance than data parallel
training with state-of-the-art communication schemes, Allre-
duce, and the possibility of training a large model through
model parallel training.

2 BACKGROUND
2.1 Distributed Model Parallel Training
As the size and complexity of DNN have been growing rapidly
and the memory size of GPU has the limitation, some giant DNN
model can not be loaded to single GPU for training. To facilitate
the training of the large DNN model, model parallel training is
to divide the model and assign partition of the model to multiple
GPUs. The main problem of model parallel training is the low uti-
lization of GPUs due to forward and backward dependency and
small size of the computation load of fragmented models assigned
to each GPU shown in Figure 1 (b). From the perspective of commu-
nication overhead in model parallel training, there is no parameter
synchronization between multiple GPUs, but activation outputs
and gradients transfer between operators.

2.2 Distributed Data Parallel Training
As the size of the neural network and datasets has been increasing,
training a model on multiple GPUs becomes common. As shown in
Figure 1 (a), data parallel training learn the same replicated model
with multiple GPU workers and mainly use two architectures to
share trained parameters between workers - Parameter Server and
Allreduce.

Parameter server is a centralized architecture consisting of the
server group and several worker group. The server group maintains
global shared parameters and communicates with worker group to
update or broadcast the shared parameters. However, this central-
ized architecture has a communication bottleneck with the high

Figure 2: Communication overhead of data parallel training
using multi-GPU server instances with 4 GPUs.

communication cost on the central nodes. Also, DL models with
dense parameters are not suitable for the parameter server [12]

All reduce is the method presented in [1]. It has recently received
attention because of its good performance by utilizing network
efficiently. Allreduce consists of peer-to-peer communication and
each worker delivers a portion of the gradients to nearby workers.
By doing so, Allreduce reduces the amount of data that needs to be
transferred and mitigates the centralized network bottlenecks [25].
Nevertheless, Allreduce still suffers from communication overhead
when synchronizing gradients, because Allreduce communication
is only possible when all workers complete their application simul-
taneously [19].

3 MOTIVATION
3.1 Intra- and Inter-Communication Overhead
Data parallel training should perform parameter synchronization
among multiple workers for each step. Figure 4 (a) shows Allreduce
communication behavior of Horovod using 16 GPUs. In multi-GPU
server clusters, the workers on the same node come up with intra-
node communication and do inter-node communication with the
worker on the other node. Figure 2 shows the fraction of time spent
by communication stalls in data parallel training on GPU clusters
which consists of 4 GPUs in each node. Data parallel training with
4 GPUs only takes place intra-node communication. However, as
shown in Figure 2, the communication overhead drastically in-
creases at data parallel training using 8 GPUs where it also happens
inter-node communication. We can observe that the performance of
data parallel training significantly suffers from inter-node commu-
nication. Furthermore, it is inavoidable as the scale of data parallel
training increases.

Model parallel training doesn’t need to perform parameter syn-
chronization, but consider data transfer between operators assigned
to multi-GPU. Highly depending on the number and placement of
partitioned layers of model for model parallel training, inter-node
communication has increased numerous times, making it inefficient.
However, model partitioning for optimal model parallel training is
not trivial.

3.2 Effect of Batch Size in Model Training
It is known that training performance increases up to some point
with larger batch size [3]. In data parallel training on especially
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Figure 3: System architecture

heterogeneous GPU, the DNN model with high batch size can not
be loaded to the GPU which has a small size of memory. In our
measurement, the batch size of 32 in VGG-19 and 16 in ResNet-152
respectively is the maximum size to fit into GeForce RTX 2060 [20]
which has the memory size of 6GB. However, in model parallel
training, we have advantage in GPU memory because one DNN
model is divided into multiple GPUs. It enables training with larger
batch size than usual data parallel training and finally leads to
training performance improvement.

4 SYSTEM DESIGN
In this section, we give a design of the system that we propose.
As we mention in Section 3, both model and data parallel training
especially suffer from inter-node communication as the number of
using GPUs increases in distributed GPU clusters. We propose our
system that integrates model and data parallel training by grouping
multiple GPUs as a worker for model parallel training, denoted by
MP worker. Also, each MP worker adopts Allreduce to synchronize
parameters with other MP workers.

4.1 Resource Awareness
As mentioned previously, which data is transmitted by inter-node
communication is very critical to model training performance.
Therefore, resource allocator distinguishes what kind of network in-
terfaces exist in the cluster configuration and composes the worker
group named MP worker to minimize inter-node communication
overhead. Also, for intra-node communication, resource allocator
considers GPU order in a MP worker to share the weight of the
model partition only through the intra-node communication.

4.2 Model Partitioning
How to divide a model for model parallel training is difficult and is
another subject of research in itself [5, 14]. In this paper, our model
partitioner finds the model partition to minimize 1 iteration time
composed of estimated computation time and calculated communi-
cation time. The total computation time is represented as sum of
the computation time of each partition P in the given GPU device
D. The computation time for each partition is estimated from the

Architecture CUDA Core Memory Size(GB)

TITAN RTX Turing 4608 24
TITAN V Volta 5120 12

GeForce RTX 2060 Turing 1920 6
Quadro P4000 Pascal 1792 8

Table 1: Heterogeneous GPUs

profiled data. The communication time is calculated by the acti-
vation output size of last layer in each partition with theoretical
network bandwidth. It is multiplied by 2 because the training is
bi-directional - forward and backward pass. The equation for the
objective function is as follows:

Objective =
∑

P∈P̄ ,D∈D̄

(∑
l∈P

Comp(l , D)

)
+2∗

∑
P∈P̄

OutputSize(lmax (x |lx ∈P ))

NetworkBW

when P̄ = {P1, P2, ... } , D̄ = {D1, D2, ... }

Through minimizing the objective function, the model parti-
tioner finds an appropriate partition for the MP worker given by
the resource allocator. For example, in figure 7, the model parti-
tioner devides the model after the layer which has small activation
output size such as mpool layer.

4.3 MP worker with Allreduce
As shown in Figure 3, several MP workers in the distributed GPU
clusters update their parameters with their forward and backward
pass respectively, and then perform parameter synchronization
with other MP workers through Allreduce communication. Fig-
ure 4 (b) shows the overall communication behavior in these MP
+ Allreduce. When running forward and backward pass within
the MP worker, bi-directed inter-node communication occurs. The
parameter synchronization with Allreduce is performed through
intra-node communication because the partition of model parame-
ters in the multi-MPworker is in the same node. Themain challenge
in this architecture is to reduce the amount of bi-directed inter-
node communication. This system executes hybrid parallel strategy
that reduces inter-node communication between DP and MP in
situations where inter-node communication between DP and MP
is unavoidable as described in Section 3.1.

5 IMPLEMENTATION
Model Partitioner We used CPLEX, the MIP(mixed integer pro-
gramming) problem optimizer, to find a proper partition. Also,
tf.device provided by Tensorflow is used for placing the com-
putation graph to specific device on the particular servers. Model
partitioner leverages tf.device to assign the partition of layers of
DNN model graph to the device group in MP worker.

MPworker We implemented MP worker by modifying Tensor-
flow CNN benchmarks. The method create_MP_worker() groups
multiple GPUs to each MP worker with the number of MP worker
provided by the resource allocator. Then, the number of worker
and worker configuration in TF CNN benchmarks is changed to
treat the MP worker. In figure 3, TF CNN benchmarks creates 4
DNN model computation graphs and performs Allreduce with 4
workers.
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Figure 5: Top-5 accuracy vs time for VGG-19 using 16 GPUs.

6 EVALUATION
6.1 Experiment Setup
GPU cluster configuration In heterogeneous GPU cluster, we
use four nodes with two Intel Xeon Octa-core E5-2620 v4 processors
(2.10 GHz) connected via Infiniband (56 Gbps). Each node has 64 GB
memory and 4 GPUs. Each node is configured with a different type
of GPUs: TITAN RTX [22], TITAN V [23], GeForce RTX 2060 [20],
and Quadro P4000 [21]. The detailed hardware spec of each GPU is
explained in Table 1. Thus, the total number of GPUs in our cluster
is 16. Each GPU is equipped with PCIe-3×16 (15.75 GB/s). Ubuntu
16.04 LTS with Linux kernel version 4.4 is used.

Frameworks We select Tensorflow v1.12 and CNN benchmarks
provided by Tensorflow [26]. As baselines, we adopt data parallel
training with Horovod [25] on Tensorflow with OpenMPI v4.0.0
for Allreduce.

Models and Datasets We evaluate two CNN models for image
classification on ImageNet-1K [6] dataset: VGG-19 and ResNet-152.
VGG and ResNet is relatively large models among benchmarks.

Training Methodolgy We use the maximum batch size that
fits in all GPUs in our clusters. In data parallel training, the batch
size of VGG-19 is 32 and ResNet-152 is 16 respectively. In MP +
Allreduce, we use batch size of 128 for both VGG-19 and ResNet-
152. Other hyper-parameters including optimizer, learning rate,
precision are used the default value in TF CNN benchmarks and
are not different in our system and baseline.

6.2 Comparision to Data Parallel Training
Performance We evaluate training performance by throughput
(the number of processed images per second). We run 100 iterations
after warm-up phases and average all throughput measured at

Figure 6: Training throughput on VGG-19 and ResNet-152.

each iteration. Figure 6 shows training throughput of VGG-19 and
ResNet-152 on our system and Horovod respectively. In Figure 6,
"H" denotes Horovod, "M" denotes MP + Allreduce, that is our
system. The performance of our system of VGG-19 and ResNet-152
improves by 6 % and 31% respectively compared to that of Horovod.
In figure 2, we can observe that inter-node communication overhead
of ResNet-152 is higher than that of VGG-19 in data parallel training.
Based on our results, our system is efficient in the case of high
inter-node communication overhead in data parallel training. This
result also supports that inter-node communication overhead of
MP worker in our system is less than that of Horovod.

Model Convergence We evaluate convergence by top-5 val-
idation accuracy versus time for VGG-19. We train Horovod and
MP + Allreduce for 12 hours and evaluate top-5 accuracy. We don’t
modify parameter synchronization algorithm, thus training perfor-
mance is proportional to convergence rate. Because of time limit
and low improvement of training performance on VGG-19, the
difference of convergence rate is not noticeable in Figure 5.

7 RELATEDWORK
7.1 Communication schemes for Distributed

Training on Heterogeneous cluster
There have been studies about decentralized communication topol-
ogy on heterogeneous cluster. D-PSGD [17] assumes that a network
is formed as a connected graph. Every node has its local parameter
of the model. In each clock, all node average its parameter only
with its neighbors. It still has idle time caused by waiting for the
slowest node finishes its job. AD-PSGD [18] is an another work
that shows zero idle time. It randomly selects one neighbor and
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averages parameters. This averaging step is done in asynchronous
manner on each node. However, it only considers heterogeneous
network topology, not a computational resources such as GPUs.

7.2 Hybrid Parallelism
Recently, research on hybrid parallelism has been developing, where
it combines model and data parallel strategy for distributed train-
ing to improve sub optimal parallel strategy. OptCNN [9] proposed
layer-wise parallelism for distributed CNN model training. They
allow each layer in DNN to use an individual parallel method
by solving a graph search problem. However, they didn’t show
the convergence results to support their argument not losing ac-
curacy compared to conventional methods. There is another hy-
brid parallelism that introduces SOAP (Sample-Operator-Attribute-
Parameter) search space of parallel strategies for DNNs [10]. Still, it
does not consider heterogeneous configuration and execution time
of application must be predictable.

7.3 Pipelined Model Parallel Training
Because of sequential dependencies between layers in DNN, model
parallel training usually shows low GPU utilization. Also, sending
and receiving parameters between nodes through interconnection
is too expensive. PipeDream [19] suggests hybrid parallelism that
adopts pipelining methods to alleviate these problems. It reduces
the overhead by overlapping communication and computation.
Gpipe [8] suggests another pipelining model parallelism for opti-
mizing memory efficiency. It supports large DNN model training by
dividing mini-batch into micro-batches and re-computing activa-
tion output for backward pass, but suffers from poor performance.

8 CONCLUSION
Training large and complex DNN models needs to use distributed
GPU clusters. With multiple GPUs and nodes on cluster, inter-node
communication for synchronizing parameters is inavoidable in
data parallel training. To handle this problem, we analyze intra-
and inter- node communication behavior of Horovod Allreduce
according to cluster topology and tried to minimize inter-node
communications.

The system we designed is basically hybrid parallel scheme. We
groups GPUs in different nodes into MP workers and they perform
Allreduce to synchronize parameters with other workers. In our sys-
tem, allreduce is done through the intra-communication and only
small amount of data is transferred through inter-communication
by model partitioner. Therefore, it is possible to train with larger
batch size or large model which can not fit into single GPU by
adopting model parallel training. Even though we do not perform
pipelining to reduce the idle time of model parallel training, it
achieves higher training performance on CNN models for image
classification. Based on our experimental results, our system is effi-
cient to mitigate high inter-node communication overhead in data
parallel training.
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