
1

PHD-PSGD: Probabilistic Heterogeneity-aware
Decentralized Training

Gyeongchan Yun

Abstract—Recent distributed training approach on deep learning (DL) adopts AllReduce for data parallel training. As the many
decentralized algorithms can outperform the centralized ones, it becomes interested in the field of research. In this paper, within the
trend of decentralized algorithm, we propose PHD-PSGD , a Probabilistic Heterogeneity-aware Decentralized training approach on
heterogeneous GPU cluster. PHD-PSGD generates the groups of workers and dynamic communication graph with the
heterogeneity-aware probability. Also, PHD-PSGD first proposes a hybrid decentralized algorithm that synchronous AllReduce within
the group and asynchronous weight averaging among group. In our experiments, we evaluate ResNet-50 on ImageNet dataset.
PHD-PSGD achieves 49% speedup of throughput and the target accuracy of 73.9% is reached 10% faster than that of AllReduce.
However, PHD-PSGD cannot achieve the final accuracy of AllReduce. We discuss the future system design to solve the convergence
problem.

Index Terms—Cloud computing, heterogeneous GPU cluster, distributed deep learning, data parallel training, decentralized algorithm

F

1 INTRODUCTION

Recently, the application of deep learning technology has
been successful and popular in many areas. In the line with
this trend, the computational complexity of the DNN model
and the volume of datasets have increased for the high
accuracy. Therefore, it is necessary to train DNN on multi
GPUs to address a problem that requires a long time as
training needs intensive computations and large datasets.

There have been a variety of parallel techniques to
accelerate training on multiple GPUs: Data parallel training
has a replica of the entire model and divides dataset across
each GPU [1], [2]. Model parallel training holds a partition
of the model among multiple GPUs [3], [4], [5], hybrid
parallel training combines these two techniques [4], [6],
[7]. Furthermore, due to the low GPU utilization of model
parallel training, techniques to apply pipelining has been
proposed [8], [9].

The widely used approach of distributed training is data
parallel training since it is supported by most ML frame-
works such as PyTorch [10] and Tensorflow [11]. In Figure 1,
there are communication architectures in data parallel train-
ing. A parameter server (PS) [2] has been commonly used
in distributed DL training. However, as shown in Figure 1
(a), this centralized architecture has a communication bot-
tleneck with the high communication cost on the central
nodes. AllReduce [12] in Figure 1 (b) takes a peer-to-peer
communication so that improve network latency.

Moreover, the decentralized training in Figure 1 (c) has
recently become popular in the field of research. After D-
PSGD [13] shows theoretically proves decentralized algo-
rithms can outperform centralized ones. Unlike PS and
AllReduce, which use the specific communication graph,

• G. Yun is with the School of Computer Science and Engineering, UNIST,
Ulsan, Republic of Korea.
E-mail: rugyoon@unist.ac.kr

(a) Centralized (b) AllReduce (c) Decentralized

Fig. 1. Data parallel training architecture

the decentralized training scheme can use an arbitrary
connected communication graph to specify point-to-point
communication between workers with stochastic weight
averaging.

With the popular of DL techniques and rapid devel-
opment of GPU architecture and its expensive cost, het-
erogeneous GPU clusters are commonplace [14]. Various
studies have been devoted to developing the centralized
algorithms in heterogeneous environment [14], [15], [16],
little attention has been paid to the decentralized algorithms
to mitigate heterogeneous problem. Hop [17] points out this
problem and succeed in applying technologies that have
been applied to centralized settings such as backup worker,
staleness bound, and skipping iteration to decentralized
settings. In addition, there has been many studies on the
decentralized algorithm in heterogeneous cluster [18], [19].

In this paper, within the trend of decentralized algorithm
in heterogeneous environment, we propose PHD-PSGD, a
Probabilistic Heterogeneity-aware Decentralized SGD train-
ing approach on heterogeneous GPU cluster. PHD-PSGD
generates the groups of workers and dynamic communica-
tion graph with the weighted probability by heterogeneity-
aware manner. Moreover, we first propose a hybrid de-
centralized parameter synchronization algorithm that syn-
chronous AllReduce within the group and asynchronous
weight averaging among group. We evaluate ResNet-50 [20]

2

which is one of the famous CNN models on ImageNet
dataset for image classification. PHD-PSGD achieves 49%
speedup of throughput and the target accuracy of 73.9% is
reached 10% faster than that of AllReduce.

Our contributions are as follows:

• We first propose a hybrid decentralized parameter
synchronization algorithm for heterogeneous GPU
cluster.

• We first propose a dynamic communication graph
connected by a heterogeneity-aware probability.

• We implement PHD-PSGD on PyTorch, one of the
popular ML frameworks, and evaluate it with Py-
Torch AllReduce with NCCL which is a state-of-the-
art data parallel training method.

• We evaluate ResNet-50 on ImageNet dataset. Com-
pared with other datasets for image classification:
MNIST [21] and CIFAR-10 [22], ImageNet dataset is
time-consuming and difficult to achieve high accu-
racy.

• We provide a detailed analysis of performance im-
provement of PHD-PSGD

• In Section 6, we propose a future sophisticated PHD-
PSGD design to improve its convergence efficiency
and performance.

2 BACKGROUND AND MOTIVATION

2.1 Data Parallel Training Architecture
As shown in Figure 1 (a), data parallel training learn the
same replicated model with multiple GPU workers and
mainly use two architectures to share trained parameters
between workers - Parameter Server and Allreduce.

Parameter server is a centralized architecture consisting
of the server group and several worker group. The server
group maintains global shared parameters and communi-
cates with worker group to update or broadcast the shared
parameters. However, this centralized architecture has a
communication bottleneck with the high communication
cost on the central nodes. Also, DL models with dense
parameters are not suitable for the parameter server [23]

AllReduce is the method presented in [12]. It has re-
ceived attention because of its good performance by uti-
lizing network efficiently. AllReduce consists of peer-to-
peer communication and each worker delivers a portion of
the gradients to nearby workers. By doing so, AllReduce
reduces the amount of data that needs to be transferred
and mitigates the centralized network bottlenecks [24].
Nevertheless, AllReduce still suffers from communication
overhead when synchronizing gradients, because AllReduce
communication is only possible when all workers complete
their application simultaneously [9].

In decentralized training algorithms [13], [25], there is no
central node. Similar with AllReduce, every worker main-
tains its own version of parameters. Workers use an arbi-
trary connected communication graph to specify point-to-
point communication. In each iteration, a worker computes
gradients, sends its parameters to its out-going neighbors,
and updates its parameters by averaging them with its in-
coming neighbors. It has been recently theoretically shown
for the first time that decentralized algorithms can outper-
form centralized ones.

Fig. 2. Synchronization techniques in data parallel training

1 4 8 12 16
Number of GPUs

0

20

40

60

80

100

Co
m

m
. O

ve
rh

ea
d

(%
 o

f t
ot

al
 ti

m
e) VGG-16

ResNet-50

Fig. 3. Inter-node communication overhead on 16 GPU cluster

2.2 Synchronization in Data Parallel Training
In distributed data parallel training, parameter synchroniza-
tion among multiple workers is necessary. Bulk Synchronous
Parallel (BSP) is common technique to synchronize parame-
ters after all other workers finish the current mini-batch. As
shown in Figure 2, updates(gradients) of current mini-batch
from all workers must be reflected to the parameters before
starting next mini-batch. It shows high communication over-
head and long system idle state on heterogeneous cluster.
To reduce synchronization cost in BSP, Asynchronous Parallel
(ASP) has been proposed that each worker does not wait for
other workers. In Figure 2, if there is a worker finished cur-
rent mini-batch, it send its updates to the parameter server
and proceed to next mini-batch without waiting. It shows
the improvement of training performance, but it is known
that it does not ensure convergence. For Stale Synchronous
Parallel (SSP), it is allowed to use a staled version of the
parameters for training. Each worker keeps their parameters
and do not synchronize until staleness of the parameter ex-
ceeds predefined threshold. Each parameter may not reflect
recent updates, but its convergence is proved. Also, it shows
good performance with heterogeneous cluster.

2.3 Inter-node Communication Overhead
Data parallel training should perform parameter synchro-
nization among multiple workers for each step. In multi-
GPU server clusters, the workers on the same node come
up with intra-node communication and do inter-node com-
munication with the worker on the other node. Figure 3
shows the fraction of time spent by communication stalls
in data parallel training on GPU clusters which consists of
4 GPUs in each node. Data parallel training with 4 GPUs
only takes place intra-node communication. However, as

3

Fig. 4. System architecture of PHD-PSGD

shown in Figure 3, the communication overhead drastically
increases at data parallel training using 8 GPUs where it
also happens inter-node communication. We can observe
that the performance of data parallel training significantly
suffers from inter-node communication. Furthermore, it is
inavoidable as the scale of data parallel training increases.

3 SYSTEM DESIGN

In this section, we explain the system design of PHD-PSGD.
PHD-PSGD focuses on training the DNN model by the
decentralized approach on heterogeneous GPU cluster. As
we mentioned in background and motivation, we try to
tackle the performance degradation problem also shown
decentralized approach in heterogeneous environments.

Figure 4 shows the overall system architecutre of PHD-
PSGD. There are two main components: group generator and
graph generator. PHD-PSGD generates the groups of workers
in group generator and dynamic communication graph with
the weighted probability by heterogeneity-aware manner
in graph generator. In addition, PHD-PSGD adapts a hy-
brid parameter synchronization strategy that synchronous
AllReduce within the group and asynchronous weight av-
eraging among group.

3.1 Profiler
Profiler gathers two information of the input DNN model.
First, Profiler measures the size of weight(weight, bias),
which is called model parameters, for all layers in the DNN
model in bytes. Second, Profiler measures the average com-
putation time of the DNN model on each GPU by running
1000 iterations.

With the information of the input DNN model, Profiler
estimates the communication time by dividing the size
of model parameters by the theoretical intra- and inter-
network bandwidth taken as the input of Profiler. Finally,
Profiler records three configurations 1) computation capa-
bility of heterogeneous GPU 2) intra-node communication
3) inter-node communication for the heterogeneous GPU
cluster configuration. The cluster configuration is taken as
input to the group generator and the graph generator.

3.2 Group Generator
Group generator takes two inputs: 1) Cluster configuration
2) The number of GPUs per group N. Then, NG is calculated
by dividing the total number of machines in the cluster by N.
Given NG, the group generator makes groups to minimize
the objective function among all candidate of groups. The
equation for the objective function is as follows:∑

Objective =
∑

Comp(Gi) +
∑

Comm(Gi)

where Comm =
ParamSize(DNN model)

NetworkBW

For example, in Figure 4, given NG of 5 and the cluster
configuration, group generator generates 5 groups consist-
ing of 4 worker with respect to the objective function.

3.3 Graph Generator
After groups being generated, the graph generator takes
the group information. The graph generator calculates the
weighted probability which is assigned by higher probabil-
ity when communication between the groups with similar
execution time. For instance, in Figure 4, the dynamic com-
munication graph is configured with the probability of 0.5
between G0 and G1. It indicates that two groups G0 and G1
has the similar execution time.

3.4 Synchronization
To reduce synchronization cost in heterogeneous environ-
ment, PHD-PSGD adapts the hybrid parameter synchro-
nization technique to leverage the decentralized settings
configured by the group and graph generator.

Within the group, all workers execute AllReduce syn-
chronously. In Figure 4, workers in G0, G1, ..,G4 respectively
synchronize parameters of the DNN model by AllReduce.
Among the groups, each group communicates with other
groups asynchronously by weight averaging adapted in AD-
PSGD. When workers within the group Gn is processing the
mini-batch i, group Gn+1 which wants to do weight averag-
ing should be blocked until the mini-batch i in the group Gn
is finished. This is the reason that the communication graph
among groups is configured to connect between groups of
similar execution time with high probability in Section 3.3

4 IMPLEMENTATION

We implement PHD-PSGD by modifying the PyTorch dis-
tributed training code on ImageNet [26].

Group Generator: Group Generator is implemented by
the PyTorch existing APIs: init_process_group() and
new_group(). The function can be used to create new
groups, with arbitrary subsets of all processes. The objective
function in Section 3.2 is implemented by Python math() li-
brary. The objective function returns list of group consisting
of worker id (from perspective of PHD-PSGD, process id).
Then, the list is passed to new_group() to generate group.

Graph Generator: Graph Generator is implemented
by the Pytorch point-to-point communication APIs:
send(tensor, group) and recv(tensor, group).
The weighted probability in Section 3.3 is implemented by
Python random() library. After group-pair is determined

4

Architecture CUDA Core Memory Size(GB)

TITAN RTX Turing 4608 24
TITAN V Volta 5120 12

GeForce RTX 2060 Turing 1920 6
Quadro P4000 Pascal 1792 8

TABLE 1
Heterogeneous GPUs

Fig. 5. Methodology of PHD-PSGD on the heterogenous GPU cluster

by the weighted probability, group-pair is passed as group
to send(tensor, group) and recv(tensor, group).
Note that in PHD-PSGD, we only assume data parallel
training, tensor is all of the model’s parameter.

Synchronization: The PHD-PSGD’s synchronization
strategy is implemented by the Pytorch multi-GPU col-
lective function APIs: all_reduce_multigpu(tensor,
group) and barrier(). Within the group, the list of
process id which is dealt with group in the implementation
is passed to all_reduce_multigpu(tensor, group).
Among groups, weight averaging is processed with param-
eters of workers from send() and recv() in the graph
generator while blocking by barrier().

5 EVALUATION

5.1 Experiment Setup

GPU cluster configuration: We have heterogeneous GPU
cluster consisting of 4 nodes connected via 56Gbps Infini-
band. Each node has two Intel Xeon Octa-core E5-2620 v4
@ 2.10 GHz processors and 64 GB memory. Each node is
equipped with a different type of 4 GPUs and PCIe-3×16
(15.75 GB/s): TITAN RTX [27], TITAN V [28], GeForce RTX
2060 [29], and Quadro P4000 [30]. The total number of GPUs
is 16 and the detailed hardware spec is shown in Table 1.
Ubuntu 16.04 LTS with Linux kernel version 4.4, CUDA 10.2,
cuDNN 7, NCCL v2.4 is used.

Frameworks: We select PyTorch v1.1.0 [10] to implement
PHD-PSGD. Also, we adopt baseline as PyTorch AllReduce
with DistributedDataParallel [31] on communication back-
end NCCL.

DNN model and Dataset: We evaluate ResNet-50 [20]
which is one of the famous CNN models for image classi-
fication. The model is trained with the ImageNet (ILSVRC
2012) [32] dataset that has 1.28M training images and 50K
validation images in 1000 categories.

12 24 36
Time (hours)

0

25

50

75

100

To
p-

1
Ac

cu
ra

cy
 (%

)

AllReduce
PHD-PSGD

Fig. 6. Top-1 validation accuracy (%) of ResNet-50 using 16 GPUs

5.2 Methodology
Hyper-parameter configuration: With the constraint of
memory size of heterogenous GPUs, we set up a batch
size per GPU to 32. Thus, a global batch size in AllReduce
is 512 since we have total 16 GPUs. The following hyper-
parameters are equally configured in [20]. We use SGD with
a momentum of 0.9. The learning rate starts from 0.1 and is
divided by 10 at 30, 60, 80, 90 epoch. We use a weight decay
of 0.0001 and adopt batch normalization.

PHD-PSGD: Given our heterogeneous GPU cluster,
PHD-PSGD constructs their group and probabilistic com-
munication graph shown in Figure 5.

Profiler runs to get the profiling data which includes the
computation time of ResNet-50 on each GPU, the parameter
size of ResNet-50 (98MB) and estimates the communication
time by taking input as theoretical intra- and inter-network
bandwidth of 15 GB/s, 56Gbps respectively.

Group generator takes two input as the number of GPU
per group N = 4 and the GPU cluster configuration. Even-
tually, Group generator makes a decision of generating the
group as the form of intra-node workers. It is determined
that the computation is executed on the intra-node and
asynchronous communication happens with the inter-node
groups to aggregate model convergence data produce the
minimal total training execution time.

Graph generator gives more weights to group-to-group
communications with similar computing power. Since
group-to-group communication behaves asynchronously,
this communication graph helps reduce each group wait-
ing time for finishing mini-batch processing within other
groups. In our heterogeneous GPU cluster, with perspective
of computational capability, V > R > G > Q where V, R, G
and Q represents TITAN V, TITAN RTX, GeForce RTX 2060
and Quadro P4000 respectively. Among them, V and R has
the similar power, G and Q has the similar one. As shown
in Figure 5, the weighted probability of communication
between groups of V and R, groups of G and Q is 0.5 and
other probability is configured to 0.25.

5.3 Convergence
In this section, we analyze the convergence performance of
PHD-PSGD. The performance metric is the time to reach
a target top-1 validation accuracy (%) which indicates how
fast the training approach can make the DNN model achieve
the target accuracy. Figure 6 shows the top-1 validation
accuracy of ResNet-50 of PHD-PSGD and AllReduce over

5

6 12 18
Time (hours)

0

25

50

75

100
To

p-
1

Ac
cu

ra
cy

 (%
)

AllReduce
PHD-PSGD

Fig. 7. Time to the target accuracy (%) of ResNet-50 using 16 GPUs

0 30 60 90
Epoch

0

25

50

75

100

To
p-

1
Ac

cu
ra

cy
 (%

)

AllReduce
PHD-PSGD

Fig. 8. Epoch to the target accuracy (%) of ResNet-50 using 16 GPUs

time using 16 GPUs. We have an observation that as ResNet-
50 arrives at 81 epoch, the top-1 validation accuracy is
reached to 73.9% and can not increase anymore. Thus, we
stop PHD-PSGD over at 120 epoch, eventually, the result
was 2% short of the 75.9% achieved by AllReduce as our
baseline. We analyze that asynchronous weight averaging
among the groups impact more negatively to the model’s
convergence than we expect. The convergence problem of
PHD-PSGD is discussed in Section 6.

With the accuracy of PHD-PSGD not reaching that of
AllReduce, we set the target accuracy to 73.9% and proceed
with the evaluation. As shwon in Figure 7, the time to reach
the target accuracy of PHD-PSGD is 10% faster than that
of AllReduce. Figure 8 shows convergence rate of PHD-
PSGD and AllReduce. We represent epoch to reach the target
accuracy of ResNet-50 using 16 GPUs which indicates how
many epochs are proceeded to achieve the target accuracy.
The proceeding epochs by AllReduce is 60 and the epoch of
PHD-PSGD is 81. We observe that it results in the decrease
of the statistical efficiency that our hybrid parameter syn-
chronization strategy where synchronous AllReduce within
the group and asynchronous weight averaging among the
group. Nevertheless, the reason to achieve the accuracy of
PHD-PSGD 10% faster can be seen as a significant increase
in training performance over the decreased statistical ef-
ficiency. The analysis of training performance proceeds in
Section 5.4.

5.4 Performance

Figure 9 shows the training throughput of PHD-PSGD and
AllReduce on ResNet-50 using 16 GPUs. The performance
metric is images per seconds (Images/sec). For image clas-

 Allreduce PHD-PSGD

500

1000

1500

2000

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(Im
ag

es
/s

ec
)

Fig. 9. Training throughput (Images/sec)

 V-R V-Q PHD-PSGD

500

1000

1500

2000

2500

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(Im
ag

es
/s

ec
)

(a) Straggler

 Allreduce PHD-PSGD

100

200

300

400

Ne
tw

or
k

am
ou

nt

(M
B/

Ite
ra

tio
n)

(b) Network amount

Fig. 10. Throughput analysis

sification task, a image is considered as a mini-batch, thus
the metric indicates how many mini-batches are processed
per seconds. As shown in Figure 9, PHD-PSGD achieves
49.2% speedup of the performance compared to AllReduce.

To show how PHD-PSGD mitigates the straggler prob-
lem which is the common problem of data parallel training
on heterogeneous GPU cluster, we measure the training
performance two cases when V, the most powerful comput-
ing capability in our GPU cluster, is paired with R which
has the similar capability and is paired with a straggler,
Q. In Figure 10 (a), V-R denotes the pair of V and R, V-Q
denotes that of V and Q. Since the communication graph in
PHD-PSGD is probabilistic, these two cases are not always
happened, but it can be shown that PHD-PSGD mediates
the straggler problem.

Figure 10 (b) shows a network amount per iteration
(MB/Iteration) on a server. We only consider the inter-node
communication in this section. As shown in Figure 10 (b),
the network amount of PHD-PSGD reduces 8% compared
to that of AllReduce. We analyze that the dynamic com-
munication graph with the weighted probability in PHD-
PSGD can reduce inter-node communication overhead since
the configurable communication graph in the decentralized
training doesn’t need to communicate with all other workers
in each iteration. Moreover, since communication behavior
of PHD-PSGD is stochastic, we can not analyze the pattern,
thus we analyze a communication pattern of AllReduce
in Figure 11 to ensure the measurement of the network
amount on a server. In Figure 11, each worker sends and
receives wm/N bytes of a chunk of model parameters for
2(N−1) communication steps, where gradients are reduced
for the first N − 1 steps in (a) and the reduced values ri are
broadcast back to all workers for the next N − 1 steps in (b).
Therefore, the amount of data going into and out of a single
worker via network transfer is 2wm/N bytes and the total
communication steps are 2(N − 1), thus the total amount is
4wm/N(N −1). In our settings, N = 16, wm = 98 MB which

6

(a)

(b)

Fig. 11. Communication behavior of AllReduce

is the parameter size of ResNet-50, so a theoretical amount is
367.5 MB/Iteration which is close to the estimated amount
of 382 MB in Figure 10 (b).

6 DISCUSSION

In this section, we discuss the convergence problem of PHD-
PSGD mentioned in Section 6.3 and future system design.

Convergence problem: In system design, PHD-PSGD
focuses on improving the overall system performance. How-
ever, since it is well known problem that asynchronous
parameter aggregation takes a negative effect on conver-
gence [15], [33], we attempt to mitigate the adverse effect
by executing AllReduce synchronously within group and
communication asynchronously with other groups.

However, this asynchronous method seems to have the
more negative impact than we expected. The critical reason
we analyze is that in the process of determining the dynamic
communication graph, the graph generator connects groups
of similar computing power with high probability to pre-
vent the communication stall, not considering the parameter
staleness among groups. In addition, since the research in
ML field is not a focus in this paper, but it is necessary to
study the configuration of hyper-parameter for our different
hybrid parameter synchronization policies. Even though the
hyper parameter is set the same as AllReduce for a fair
comparison.

As a result, ResNet-50 arrives at the latter epoch and the
top-1 validation accuracy is reached to 73.9 % and can not
increase anymore. Finally, the result was 2 % short of the
75.9 % achieved by AllReduce as our baseline.

Future system design: It seems that the policy of deter-
mining the weighted probability needs to be more sophisti-
cated to consider the convergence as well. One of the future
designs we discuss is that a convergence monitor compo-
nent can be added to manage the mini-batch processing step
in all groups. They store it as metadata so that the prob-
ability can be determined with the factor of predefined the

group’s staleness bound such as the SSP technique [16]. One
concern about this design is the monitoring overhead. Since
the convergence monitor checks the mini-batch processing
step among all groups, they need to communicate with all
other groups periodically. Therefore, to reduce the overhead,
the technique to determine the sampling window also need
to be studied. We remain it as future work.

7 RELATED WORK

There have been studies about decentralized communica-
tion topology on heterogeneous cluster. D-PSGD [13] as-
sumes that a network is formed as a connected graph. Every
node has its local parameter of the model. In each clock,
all nodes average its parameter only with its neighbors. It
still has idle time caused by waiting for the slowest node to
finish its job. AD-PSGD [18] is another work that shows zero
idle time. It randomly selects one neighbor and averages
parameters. This averaging step is done in asynchronous
manner on each node. However, it only considers hetero-
geneous network topology, not a computational resources
such as GPU and CPU. Hop [17] and Prague [19], which are
the closet related study, consider decentralized training with
heterogeneity-aware manner on heterogeneous GPU cluster.
Hop proposes a queue-based synchronization protocol that
can leverages backup workers and bounded staleness and
apply skipping iterations in the decentralized setting to
mitigate the effect of slower workers. Prague designs a
distributed training method that has both high performance
in homogeneous and heterogeneous environments. They
propose Partial AllReduce that enables fast synchronization
among a group of workers and static group scheduling in
homogeneous environment.

There is AllReduce study to solve the problem of cluster
with heterogeneous network bandwidth [34]. They execute
AllReduce in two hierarchical network levels. However, this
technique does not consider heterogeneous GPUs and not
decentralized setting.

8 CONCLUSION

In this paper, we propose PHD-PSGD, a Probabilis-
tic Heterogeneity-aware Decentralized training approach
on heterogeneous GPU cluster. PHD-PSGD generates the
groups of workers and dynamic communication graph with
the weighted probability by heterogeneity-aware manner.
Also, PHD-PSGD adapts a hybrid data parallel strategy
that synchronous AllReduce within the group and asyn-
chronous weight averaging among group. In our experi-
ments, we evaluate ResNet-50 on ImageNet dataset. PHD-
PSGD achieves 49% speedup of throughput and the tar-
get accuracy of 73.9% is reached 10% faster than that of
AllReduce. However, PHD-PSGD cannot achieve the final
accuracy of AllReduce. We discuss the future system design
to solve the convergence problem.

REFERENCES

[1] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradi-
ent Descent,” in Proceedings of COMPSTAT, 2010.

7

[2] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed
Machine Learning with the Parameter Server,” in Proceedings of the
Symposium on Operating Systems Design and Implementation (OSDI),
2014.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and N. Andrew,
“Large Scale Distributed Deep Networks,” in Proceedings of the
Advances in Neural Information Processing Systems (NIPS), 2012.

[4] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv preprint arXiv:1404.5997, 2014.

[5] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P.
Xing, “On Model Parallelization and Scheduling Strategies for
Distributed Machine Learning,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS), 2014.

[6] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimen-
sions in parallelizing convolutional neural networks,” in Proceed-
ings of the International Conference on Machine Learning (ICML), 2019.

[7] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model par-
allelism for deep neural networks,” in In Proceedings of the 2nd
SysML Conference(SysML), 2018.

[8] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[9] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream:
Generalized pipeline parallelism for dnn training,” in Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 2019.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

[12] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne, and
J. Watts, “Interprocessor collective communication library (inter-
com),” in Proceedings of IEEE Scalable High Performance Computing
Conference, 1994.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu, “Can decentralized algorithms outperform centralized al-
gorithms? a case study for decentralized parallel stochastic gra-
dient descent,” in Proceedings of the Advances in Neural Information
Processing Systems (NIPS), 2017.

[14] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware
distributed parameter servers,” in Proceedings of the International
Conference on Management of Data (SIGMOD), 2017.

[15] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisit-
ing distributed synchronous sgd,” arXiv preprint arXiv:1604.00981,
2016.

[16] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More Effective Distributed ML
via a Stale Synchronous Parallel Parameter Server,” in Proceedings
of the Advances in Neural Information Processing Systems (NIPS),
2013.

[17] Q. Luo, J. Lin, Y. Zhuo, and X. Qian, “Hop: Heterogeneity-aware
decentralized training,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 893–907, 2019.

[18] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous de-
centralized parallel stochastic gradient descent,” arXiv preprint
arXiv:1710.06952, 2017.

[19] Q. Luo, J. He, Y. Zhuo, and X. Qian, “Prague: High-performance
heterogeneity-aware asynchronous decentralized training,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 401–
416, 2020.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[21] Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

[22] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of
features from tiny images,” 2009.

[23] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J. S. Jeong,
and B.-G. Chun, “Parallax: Sparsity-aware data parallel training of

deep neural networks,” in Proceedings of the European Conference on
Computer Systems (EuroSys), 2019.

[24] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[25] A. Kadav and E. Kruus, “Asap: asynchronous approximate data-
parallel computation,” arXiv preprint arXiv:1612.08608, 2016.

[26] PyTorch, “PyTorch distributed training on ImageNet.”
https://github.com/pytorch/examples/tree/master/imagenet.

[27] NVIDIA, “TITAN RTX.” https://www.nvidia.com/en-
us/titan/titan-rtx/.

[28] NVIDIA, “TITAN V.” https://www.nvidia.com/en-
us/titan/titan-v/.

[29] NVIDIA, “GeForce RTX 2060.” https://www.nvidia.com/en-
us/geforce/graphics-cards/rtx-2060/.

[30] NVIDIA, “Quadro P4000.” https://www.nvidia.com/en-
us/design-visualization/quadro-desktop-gpus/.

[31] PyTorch, “PyTorch DistirbutedDataParallel.”
https://pytorch.org/docs/stable/notes/ddp.html.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
geNet: A Large-Scale Hierarchical Image Database,” in Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[33] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in 2016
IEEE 16th International Conference on Data Mining (ICDM), pp. 171–
180, IEEE, 2016.

[34] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, T. Chen, G. Hu, S. Shaohuai, and C. Xiaowen,
“Highly Scalable Deep Learning Training System with Mixed-
Precision: Training ImageNet in Four Minutes,” arXiv preprint
arXiv:1807.11205, 2018.

